Magnetically Driven Accretion in the Kerr Metric III: Unbound Outflows

نویسندگان

  • Jean-Pierre De Villiers
  • John F. Hawley
  • Julian H. Krolik
  • Shigenobu Hirose
چکیده

We have carried out fully relativistic numerical simulations of accretion disks in the Kerr metric. In this paper we focus on the unbound outflows that emerge self-consistently from the accretion flow. These outflows are found in the axial funnel region and consist of two components: a hot, fast, tenuous outflow in the axial funnel proper, and a colder, slower, denser jet along the funnel wall. Although a rotating black hole is not required to produce these unbound outflows, their strength is enhanced by black hole spin. The funnel-wall jet is excluded from the axial funnel due to elevated angular momentum, and is also pressureconfined by a magnetized corona. The tenuous funnel outflow accounts for a significant fraction of the energy transported to large distances in the higherspin simulations. We compare the outflows observed in our simulations with those seen in other simulations. Subject headings: Black holes magnetohydrodynamics jets stars:accretion Now at Dept. of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetically Driven Jets in the Kerr Metric

We compute a series of three-dimensional general relativistic magnetohydrodynamic simulations of accretion flows in the Kerr metric to investigate the properties of the unbound outflows that result. The overall strength of these outflows increases sharply with increasing black hole rotation rate, but a number of generic features are found in all cases. The mass in the outflow is concentrated in...

متن کامل

Calculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.

In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...

متن کامل

Magnetically Driven Accretion Flows in the Kerr Metric I: Models and Overall Structure

This is the first in a series of papers that investigate the properties of accretion flows in the Kerr metric through three-dimensional, general relativistic magnetohydrodynamic simulations of tori with a near-Keplerian initial angular velocity profile. We study four models with increasing black hole spin, from a/M = 0 to 0.998, for which the structural parameters of the initial tori are mainta...

متن کامل

Effect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars

Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...

متن کامل

Outflows from dynamo-active protostellar accretion discs

An axisymmetric model of a cool, dynamo-active accretion disc is applied to protostellar discs. Thermally and magnetically driven outflows develop that are not collimated within 0.1AU. In the presence of a central magnetic field from the protostar, accretion onto the protostar is highly episodic, which is in agreement with earlier work.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004